Inequality

https://www.linkedin.com/groups/8313943/8313943-6422308015487086596
Show that for positive real numbers a, b, c, x, y, z
$\sum \frac{a}{b+c}(y+z) \geq 3\left(\frac{x y+y z+z x}{x+y+z}\right)$
and determine when equality holds.

Solution by Arkady Alt, San Jose, California, USA.

For convenience we will use letters α, β, γ instead letters a, b, c, respectively, and now letters a, b, c be free for using their to another work, namely let $a:=\sqrt{y+z}$, $b:=\sqrt{z+x}, c:=\sqrt{x+y}$. Then numbers a, b, c are sidelengths of some acute triangle with area F and since $x=\frac{b^{2}+c^{2}-a^{2}}{2}, y=\frac{c^{2}+a^{2}-b^{2}}{2}, z=\frac{a^{2}+b^{2}-c^{2}}{2}$ then $x+y+z=\frac{a^{2}+b^{2}+c^{2}}{2}, x y+y z+z x=\frac{2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}-a^{4}-b^{4}-c^{4}}{4}=4 F^{2}$ and inequality of the problem becomes $\sum \frac{\alpha}{\beta+\gamma} a^{2} \geq \frac{24 F^{2}}{a^{2}+b^{2}+c^{2}}$.
Or, by replacing α, β, γ with x, y, z (which now became free for using) we obtain inequality (1) $\sum \frac{x a^{2}}{y+z} \geq \frac{24 F^{2}}{a^{2}+b^{2}+c^{2}}$, where $x, y, z>0$ which is equivalent geometric interpretation of original inequality.
By Cauchy Inequality we obtain $\sum \frac{x a^{2}}{y+z}=\sum\left(\frac{x a^{2}}{y+z}+a^{2}\right)-\sum a^{2}=$
$(x+y+z) \sum \frac{a^{2}}{y+z}-\sum a^{2} \geq \frac{(a+b+c)^{2}}{2}-\sum a^{2}=\frac{\Delta(a, b, c)}{2}$,
where $\Delta(a, b, c):=2 a b+2 b c+2 c a-a^{2}-b^{2}-c^{2}$.
Thus, remains to prove
$\frac{\Delta(a, b, c)}{2} \geq \frac{24 F^{2}}{a^{2}+b^{2}+c^{2}} \Leftrightarrow\left(a^{2}+b^{2}+c^{2}\right) \Delta(a, b, c) \geq 48 F^{2}$.
But letter inequality holds because $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} F$ (Weitzenböck's inequality) and $\Delta(a, b, c) \geq 4 \sqrt{3} F$ is Δ-form of Hadwiger-Finsler Inequality)
Equality in inequality (1) holds iff $\frac{y+z}{a}=\frac{z+x}{b}=\frac{x+y}{c}$ (equality condition in Cauchy Inequality) and $a=b=c$ (equality condition in Weitzenböck's and HF inequalities), that is iff $x=y=z$ and $a=b=c$.
Coming back to original inequality we obtain the same conditions of equality in original notations.

1. Arkady Alt, Geometric Inequalities with polynomial $2 x y+2 y z+2 z x-x^{2}-y^{2}-z^{2}$, OCTOGON MATHEMATICAL MAGAZINE vol.22,n.2-2014.
Link to the article in the comment.
